Organized Silica Films Generated by Evaporation-Induced Self-Assembly as Hosts for Iron Oxide Nanoparticles

نویسندگان

  • Ioanna Andreou
  • Heinz Amenitsch
  • Vlassis Likodimos
  • Polycarpos Falaras
  • Petros G. Koutsoukos
  • Epameinondas Leontidis
چکیده

In this work, we prepared oriented mesoporous thin films of silica on various solid substrates using the pluronic block copolymer P123 as a template. We attempted to insert guest iron oxide (FexOy) nanoparticles into these films by two different methods: (a) by co-precipitation-where iron precursors are introduced in the synthesis sol before deposition of the silica film-and subsequent oxide production during the film calcination step; (b) by preparing and calcining the silica films first then impregnating them with the iron precursor, obtaining the iron oxide nanoparticles by a second calcination step. We have examined the structural effects of the guest nanoparticles on the silica film structures using grazing incidence X-ray scattering (GISAXS), high-resolution transmission electron spectroscopy (HRTEM), spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), and Raman microscopy. Formation of nanoparticles by co-precipitation may induce substantial changes in the film structure leading, in our adopted process, to the appearance of lamellar ordering in the calcination stage. On the contrary, impregnation-based approaches perturb the film structures much more weakly, but are also less efficient in filling the pores with nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Syntheses of Silica/Polystyrene-block-Poly(ethylene oxide) Films with Regular and Reverse Mesostructures of Large Characteristic Length Scales by Solvent Evaporation-Induced Self-Assembly

Silica/diblock films with various mesostructures of large characteristic length scales were synthesized through evaporation-induced self-assembly (EISA). The structure-directing agents used were amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers of high molecular weights. The synthesis process began with a dilute homogeneous solution of a silica precursor and the d...

متن کامل

Two-dimensional nanoparticle arrays derived from ferritin monolayers.

A scalable technique for making silica coatings with embedded two-dimensional arrays of iron oxide nanoparticles is presented. The iron oxide nanoparticle arrays were formed by depositing quasi-crystalline ferritin layers, an iron storage protein with an iron oxide mineral core, on solid substrates by a spread-coating technique based on evaporation-induced convective assembly. The layer of prot...

متن کامل

Microstructural Characterization of Polystyrene-block-poly(ethylene oxide)-Templated Silica Films with Cubic-Ordered Spherical Mesopores

We report the synthesis and characterization of mesostructured thin silica films derived from methyltriethoxysilane (MTES) and/or tetraethyl orthosilicate (TEOS) silica precursors and polystyreneblock-poly(ethylene oxide) (PS-b-PEO) diblock copolymers via the solvent evaporation-induced self-assembly (EISA) process. It is found that the mesoand microstructure of the calcined films consists of c...

متن کامل

Aerosol-based self-assembly of nanoparticles into solid or hollow mesospheres.

The ability to manipulate miniature object assemblies with well-defined structures in a controllable manner is of both fundamental and applied interests. This article presents general strategies, with nanospheres as building blocks, to engineer mesoscopic spherical architectures via a process of evaporation-driven self-assembly in aerosol droplets. Uniform magnetite iron oxide (Fe(3)O(4), appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013